Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Mỹ Dung

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

mn giúp mk nha vui

Nhã Doanh
29 tháng 6 2018 lúc 21:12

Gọi quãng đường là x (km) x > 0

Vận tốc xe thứ 2 là a (km/h) a > 0

Vận tốc xe thứ nhất là a +15 (km/h)

Vận tốc xe thứ 3 là: a - 3 (km/h)

Thời gian xe thứ 2 đi là: \(\dfrac{x}{a}h\)

Thời gian xe thứ nhất đi là: \(\dfrac{x}{a+15}h\)

Thời gian xe thứ 3 đi là: \(\dfrac{x}{a-3}h\)

Đổi: \(12'=\dfrac{1}{5}h;3'=\dfrac{1}{20}h\)

Theo đề ra ta có pt:

\(\dfrac{x}{a}-\dfrac{1}{5}=\dfrac{x}{a+15}\)

\(\Leftrightarrow5ax+75x-a^2-15a=5ax\)

\(\Leftrightarrow75x-a^2-15a=0\)

\(\Leftrightarrow75x=a^2+15a\)

\(\Leftrightarrow x=\dfrac{a^2+15a}{75}\) (1)

Lại có pt:

\(\dfrac{x}{a}+\dfrac{1}{20}=\dfrac{x}{a-3}\)

\(\Leftrightarrow20ax-60x+a^2-3a=20ax\)

\(\Leftrightarrow-60x+a^2-3a=0\)

\(\Leftrightarrow x=\dfrac{a^2-3a}{60}\) (2)

Từ (1) và (2) suy ra:

\(\dfrac{a^2+15a}{75}=\dfrac{a^2-3a}{60}\)

\(\Leftrightarrow4a^2+60a=5a^2-15a\)

\(\Leftrightarrow-a+75a=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=75\left(n\right)\end{matrix}\right.\)

Suy ra: Vận tốc xe thứ 2 là 75 (km/h)

Quãng đường đua là: \(\dfrac{75^2+15.75}{75}=90\) km

Thời gian xe thứ 2 là: 1,2h

Vận tốc xe thứ nhất là: 75 +15 = 90 (km/h)

Thời gian xe thứ nhất là: 1h

Vận tốc xe thứ 3 là: 75 - 3 = 72 (km/h)

Thời gian xe thứ 3 là : 1,25h


Các câu hỏi tương tự
Bạn Có Yêu Toán Không???
Xem chi tiết
Barca Nguyen
Xem chi tiết
Bạn Tên Là Long
Xem chi tiết
Phương Nguyễn 2k7
Xem chi tiết
Ngoc Nhu
Xem chi tiết
susannoo
Xem chi tiết
Lê Phạm Nhật Minh
Xem chi tiết
Lê Thị Cẩm Ly
Xem chi tiết
susannoo
Xem chi tiết