Chắc chắn là đáp án C rồi
Do \(\left(x-2\right)^2\ge0;\forall x\) và \(3x^3-5\rightarrow19>0\) khi \(x\rightarrow2\)
Chắc chắn là đáp án C rồi
Do \(\left(x-2\right)^2\ge0;\forall x\) và \(3x^3-5\rightarrow19>0\) khi \(x\rightarrow2\)
nếu lim f(x)=L>0, lim g(x)=-vô cùng thì kết quả của giới hạn lim f(x).g(x) là:
A/ - vô cùng
B/ 0
C/ + vô cùng
D/ L
Cho a, b là 2 số dương thỏa mãn giới hạn \(I=\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)\) hữu hạn. Tính I
Cho dãy số (Un) được xác định như sau: \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\). Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\) . Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\)
+ Cho mình hỏi khi tử dương, đối với bài này và mẫu dần đến 0, nhưng mẫu lớn hơn 0 hay nhỏ hơn không.
Theo mình hiểu là giới hạn dần đến 2- thì mẫu âm, còn 2+ thì mẫu dương, nhưng nếu giới hạn chỉ dần đến 2 mà không biết là mẫu dương hay âm thì xác định giới hạn là dương hay âm vô cực như nào ạ
Tìm giới hạn sau: \(\lim\limits_{x\rightarrow0}\dfrac{x^2-3}{x^3+x^2}\)
Tính các giới hạn
\(\lim\limits_{x\rightarrow1}\dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}\)
Tính giới hạn :