Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh

Tính giới hạn :

       

       

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 21:01

1.

Câu này chắc người ra đề nhầm lẫn, vì giới hạn đã cho không tồn tại (giới hạn phải tại 1 bằng dương vô cực, giới hạn trái tại 1 bằng âm vô cực nên ko tồn tại giới hạn tại 1)

Nếu đề là \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{2x-1}\sqrt[3]{3x-2}-1}{x-1}\) thì tính được

2.

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{2x-3}.\sqrt[3]{5x-2}-2}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{5x-2}\left(\sqrt[]{2x-3}-1\right)+\sqrt[3]{5x-2}-2}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{\sqrt[3]{5x-2}\left(2x-4\right)}{\sqrt[]{2x-3}+1}+\dfrac{5x-10}{\sqrt[3]{\left(5x-2\right)^3}+2\sqrt[3]{5x-2}+4}}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{2\sqrt[3]{5x-2}}{\sqrt[]{2x-3}+1}+\dfrac{5}{\sqrt[3]{\left(5x-3\right)^2}+2\sqrt[3]{5x-3}+4}\right)\)

\(=\dfrac{2.2}{1+1}+\dfrac{5}{4+4+4}=...\)

Câu 3 đề bài phạm sai lầm y như câu 1


Các câu hỏi tương tự
Nguyễn Linh
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Như Khánh
Xem chi tiết
Trần Hà Linh
Xem chi tiết
CHANNANGAMI
Xem chi tiết
camcon
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Linh Trần
Xem chi tiết