Bài 5. Dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) \({u_n} = n - 1\);                

b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);                               

c) \({u_n} = sin\;n\;\);                       

d) \({u_n} = {\left( { - 1} \right)^{n - 1}}{n^2}\).

Hà Quang Minh
21 tháng 9 2023 lúc 23:23

a) Ta có: \(n \ge 1\; \Rightarrow n - 1 \ge 0\; \Rightarrow {u_n} \ge 0,\;\forall \;n \in {N^*}\;\)

Do đó, \(\left( {{u_n}} \right)\) bị chặn dưới bởi 0.

\(\left( {{u_n}} \right)\) không bị chặn trên vì không tồn tại số M nào để \(n - 1 < M,\;\forall \;n \in {N^*}\).

b) Ta có:

\(\begin{array}{l}\forall n \in {N^*},{u_n} = \frac{{n + 1}}{{n + 2}} > 0.\\{u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}} < 1,\forall n \in {N^*}\\ \Rightarrow 0 < {u_n} < 1\end{array}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn.

c) Ta có: 

\( - 1 < \sin n < 1\)

\( \Rightarrow  - 1 < {u_n} < 1,\forall n \in {N^*}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn.

d) Ta có: 

Nếu n chẵn, \({u_n} =  - {n^2} < 0\), \(\forall n \in {N^*}\).

Nếu n lẻ, \({u_n} = {n^2} > 0\), \(\forall n \in {N^*}\).

Vậy \(\left( {{u_n}} \right)\) không bị chặn.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết