Ta có: \(\frac{x}{{1 - x}} = \frac{{ - x}}{{x - 1}}\)
Hai phân thức \(\frac{5}{{x - 1}}\) và \(\frac{x}{{1 - x}}\) có MTC là x – 1
Bạn Tròn chọn MTC hợp lí hơn.
Ta có: \(\frac{x}{{1 - x}} = \frac{{ - x}}{{x - 1}}\)
Hai phân thức \(\frac{5}{{x - 1}}\) và \(\frac{x}{{1 - x}}\) có MTC là x – 1
Bạn Tròn chọn MTC hợp lí hơn.
Chọn mẫu thức chung (MTC) của hai mẫu thức trên bàng cách lấy tích của các nhân tử được chọn như sau:
- Nhân tử bằng số của MTC là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã cho (nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số ở MTC là BCNN của chúng);
- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.
Tìm a sao cho hai phân thức sau bằng nhau:
\(\frac{{5{\rm{x}}}}{{x + 1}}\) và \(\frac{{ax\left( {x - 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)}}\)
Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.
\(a)\frac{{{{\left( {x - 2} \right)}^2}}}{{{x^2} - 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{2}\)
\(b)\frac{{1 - x}}{{ - 5{\rm{x}} - 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)
Tìm a sao cho hai phân thức sau bằng nhau: \(\frac{{{\rm{ - a}}{{\rm{x}}^2}{\rm{ - ax}}}}{{{x^2} - 1}}\) và \(\frac{{3{\rm{x}}}}{{x - 1}}\)
Quy đồng mẫu thức các phân thức sau:
a) \(\frac{1}{{x + 2}};\frac{{x + 1}}{{{x^2} - 4{\rm{x}} + 4}};\frac{5}{{2 - x}}\)
b) \(\frac{1}{{3{\rm{x}} + 3y}};\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}};\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}}\)
Nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng, ta được các phân thức có mẫu thức là MTC đã chọn
Quy đồng mẫu thức hai phân thức \(\frac{1}{{3{{\rm{x}}^2} - 3}}\) và \(\frac{1}{{{x^3} - 1}}\)
Tìm nhân tử phụ của mỗi mẫu thức bằng cách lấy MTC chia cho mẫu thức đó.
Cho hai phân thức: \(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}}\) và \(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}}\)
a) Rút gọn hai phân thức đã cho
b) Quy đồng mẫu thức hai phân thức nhận được ở câu a)