trên đường tròn (O;R) lấy 3 điểm A,B,C sao cho AB=BC=R. M,N lần lượt là điểm chính giữa hai cung nhỏ AB và BC .Tính số đo góc MBN
Cho đường tròn (O; R) có đường kính BC. Trên đường tròn (O) lấy điểm A sao
cho AC = R.
a) Tính góc AOC và số đo mỗi cung AC.
b) Tính số đo cung nhỏ AB.
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
Trên đường tròn (O;R) cho dây AB có độ dài bằng \(R\sqrt{3}\). Gọi K là điểm chính giữa cung nhỏ AB và I là giao điểm của OK với dây cung AB. Cho điểm E di động trên đoạn thẳng BI (E khác B và I) và gọi F là giao điểm thứ hai của KE với đường tròn tâm O. Qua điểm B kẻ đường thẳng vuông góc với KE tại điểm H và cắt AF tại điểm M. Nếu E di động trên dây cung AB để có BF=R. Tìm vị trí của điểm M đối với đường tròn tâm O
cho đường tròn tâm o bán kính R , dây BC cố định , BC< 2R . điểm A thay đổi trên cung lớn BC sao cho AB < AC . Kẻ đường kính Ad . BC cắt tiếp tuyến tại A của (o) ở M. a, IA . ED = OE .AC , DC // AE . b , Gọi G là gaio điểm của MO với đường tròn ngoại tiếp tam giác AEF . chứng minh tâm đường tròn nội tiếp tam giác ABG chạy trên một đường cố định .
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
Bài 4: cho tam giác cân ABC nội tiếp đường tròn (O), cung nhỏ BC có số đo bằng 1000. Tia AO cắt cung nhỏ AC ở E.
a, Tính số đo các góc ở tâm BOE, COE
b, Tính số đo các cung nhỏ AB, AC.
Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Kẻ 2 tiếp tuyến AB và AC vớ đường tròn(B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M rồi kẻ đường vuông góc MI,MH,MK xuống các cạnh BC,CA,AB.
Chứng minh MI mũ 2 = MH . MK
Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi