Lấy 3 đinh trong n đỉnh dc 1 tam giác => số tam giác : \(C^3_n\)
Lấy 3 đinh trong n đỉnh dc 1 tam giác => số tam giác : \(C^3_n\)
Cho một đa giác đều 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có các đỉnh là các đỉnh của đa giác trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều
cho hai đường thẳng d1 và d2 song song nhau. trên d1 lấy 5 điểm trên d2 lấy 3điểm. hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm đã chọn
Trong mặt phẳng toạ độ Oxy cho tam giác ABC vuông tại A, có đỉnh B(-3;2). Đường phân giác trong góc A có phương trình x+y-7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC biết diện tích tam giác bằng 24 và điểm A có hoành độ dương
Cho đa giác đều A 1A 2......A2n,n (n≥2 ; n∈Z) nội tiếp trong đường tròn (O). Tính:
a. Số đoạn thẳng mà hai đầu mút là hai trong 2n đỉnh A1, A 2,....A2n ?
b. Số vectơ khác vectơ – không mà điểm đầu và điểm cuối của chúng là hai trong 2n đỉnh
A1, A 2,.......A2n ?
c. Số đường chéo của đa giác trên?
d. Số tam giác có các đỉnh là ba trong 2n đỉnh A1, A2,.....A2n ?
e. Số hình chữ nhật có các đỉnh là bốn trong 2n đỉnh A1, A2,........A2n ?
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm A. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho?
Cho đa giác đều có 60 đỉnh nội tiếp đường tròn (O). Có bao nhiêu tam giác nhọn có 3 đỉnh trong 60 đỉnh của đa giác ?
Cho đa giác đều \(A_1A_2...A_{2n}\left(n\ge2,n\in N\right).\) Biết rằng số vecto khác vecto 0 có điểm đầu và điểm cuối thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\) bằng 9 lần số hình chữ nhật có các đỉnh thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\). Tìm n
a) Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên có bốn chữ số khác nhau và số đó lớn hơn 2020? b) Cho đa giác lồi (H) có 10 cạnh. Có bao nhiêu tam giác mà mỗi đỉnh của nó là đỉnh của (H) và mỗi cạnh của tam giác đó không trùng với cạnh nào của (H) ?
Cho 10 điểm phân biệt trên mặt phẳng sao cho 3 điểm bất kỳ trong chúng không thẳng hàng. Gỉa sử các đường thẳng nối các điểm từng đôi một cắt nhau và 3 trong số các đường thẳng đó chỉ có thể đồng quy tại một trong 10 điểm đã cho. Gọi S là tập hợp các tam giác tạo bởi các đường thẳng đó. Tính số phần tử của tập S.