\(VT=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3=\sqrt{3}=VP\)
\(VT=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3=\sqrt{3}=VP\)
Tính:
\(A=\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
\(B=\dfrac{1}{\sqrt{2}-1}+\dfrac{14}{3+\sqrt{2}}\)
\(C=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(D=\sqrt{\left(1-\sqrt{2}\right)^2}-3\sqrt{18}+4\sqrt{\dfrac{1}{2}}\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
rút gọn
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right)/\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
\(\dfrac{2}{\sqrt{3}-1}-\sqrt{\dfrac{2}{6-3\sqrt{3}}}\)
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
Tính
\(a.\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(b.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(c.\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\left(b>0;a\ne-\sqrt{b}\right)\)
\(p=\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(Q=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)\)
\(R=\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(S=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(T=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(U=\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
\(V=\dfrac{2}{\sqrt{3}-1}-\sqrt{\dfrac{2}{6-3\sqrt{3}}}\)
\(W=\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}-\sqrt{3}}-\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}+\sqrt{3}}\)
\(Y=\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
Câu 1 :Tính : B = ( 3 - \(\sqrt{5}\)) ( \(\sqrt{5}\) + 3 )
Câu 2 : Rút gọn : \(\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\)
Câu 3: \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a, Rút gọn biểu thức a
b, Tính giá trị của A khi x + \(\dfrac{2}{2+\sqrt{3}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
* Rút gọn biểu thức
a. \(\left(2\sqrt{125}-3\sqrt{5}-\sqrt{180}\right):\left(-\sqrt{5}\right)+\sqrt{8}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
d.\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}\right)\)