Lời giải:
Ta có: \(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)
\(\Rightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)
Lại có:
\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
\(\Rightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)
\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{19}{10}+3=\frac{49}{10}\)
\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)
\(\Leftrightarrow (x+y+z)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{49}{10}(**)\)
Từ \((*);(**)\Rightarrow M=x+y+z=7\)