\(\int\frac{x-3}{\left(x-1\right)\left(x+3\right)}dx=\int\left(\frac{3}{2\left(x+3\right)}-\frac{1}{2\left(x-1\right)}\right)dx=\frac{3}{2}ln\left|x+3\right|-\frac{1}{2}ln\left|x-1\right|+C\)
\(\int\frac{x-3}{\left(x-1\right)\left(x+3\right)}dx=\int\left(\frac{3}{2\left(x+3\right)}-\frac{1}{2\left(x-1\right)}\right)dx=\frac{3}{2}ln\left|x+3\right|-\frac{1}{2}ln\left|x-1\right|+C\)
Tính tích phân bất định :
\(I=\int\frac{a_1\sin x+b_1\cos x}{\left(a_2\sin x+b_2\cos x\right)^2}dx\)
Tìm các nguyên hàm sau:
a) \(I_1=\int\frac{\left(x^2+3\right)dx}{\sqrt{\left(2x-5\right)^3}}\)
b)\(I_2=\int\frac{dx}{\left(3x-1\right)\ln\left(3x-1\right)}\)
c) \(I_3=\int\frac{\left(x^2+1\right)dx}{\sqrt{x^6-7x^4+x^2}}\)
Tính tích phân bất định hàm số hữu tỉ sau :
\(\int\frac{x^3dx}{\sqrt{1-x}}\)
Tìm các nguyên hàm sau :
a) \(I_1=\int\frac{\sqrt{1+\ln x}}{x}dx\)
b) \(I_2=\int\frac{e^{2x}}{\sqrt[4]{e^x+1}}dx\)
c) \(I_3=\int x^2e^{x^3+6}dx\)
Tìm các nguyên hàm sau đây bằng các phép hữu tỉ hóa
a) \(I_1=\int\frac{e^{3x}}{e^2+2}dx\)
b) \(I_2=\int\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}dx\)
c) \(I_1=\int\frac{1}{x^2-1}\left[\sqrt[3]{\left(\frac{x+1}{x-1}\right)^5}\right]dx\)
1)\(\int\limits^1_0\frac{\left(3x^2+2\right)}{x^3+x^2+1}dx\)
2)\(\int\limits^1_0\frac{x}{x^{2+4}}dx\)
1)\(\int\limits^1_0\frac{\left(3x^2+2\right)}{x^3+x^2+1}dx\)
2)\(\int\limits^1_0\frac{x}{x^2+4}dx\)
Tìm nguyên hàm các hàm số lượng giác sau :
a) \(\int\frac{\cos2xdx}{\sin x\cos x}\) b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx\)
c) \(\int\frac{2x-5}{x^2-5x+7}dx\) d) \(\int\frac{xdx}{x^2+1}\) e) \(\int\frac{dx}{\sin x}\)
Tính tích phân bất định hàm số hữu tỉ sau :
\(I=\int x^2\left(2-3x^2\right)^8dx\)