\(\sqrt{\dfrac{1}{9}}\cdot\sqrt{0.81}+\sqrt{0.09}\)
=\(\dfrac{1}{3}\cdot\dfrac{3}{10}+\dfrac{3}{10}\)
=\(\dfrac{1}{10}+\dfrac{3}{10}\)
=\(\dfrac{2}{5}\)
\(\sqrt{\dfrac{1}{9}}\cdot\sqrt{0.81}+\sqrt{0.09}\)
=\(\dfrac{1}{3}\cdot\dfrac{3}{10}+\dfrac{3}{10}\)
=\(\dfrac{1}{10}+\dfrac{3}{10}\)
=\(\dfrac{2}{5}\)
\(\sqrt{\dfrac{0,09}{25}}=\dfrac{-4,7}{5}+x\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
Tìm x,y,z biết
\(\dfrac{\sqrt{xy}-1}{3}=\dfrac{\sqrt{yz-3}}{9}=\dfrac{\sqrt{zx-5}}{6}\) và \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=11\)
tìm 3 số a, b, c dương biết : \(\dfrac{\sqrt{ab}-1}{3}=\dfrac{\sqrt{bc}-3}{9}=\dfrac{\sqrt{ca}-5}{-6}\) và \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=11\)
1) \(\left(\dfrac{1}{3}\right)^{50}.90^{25}-\dfrac{2}{3}:4\)
2) \(10.\sqrt{0,01}.\sqrt{\dfrac{16}{9}}+\sqrt{49}-\dfrac{1}{6}.\sqrt{4}\)
Tìm các số nguyên a,b,c
\(\left\{{}\begin{matrix}\dfrac{\sqrt{ab}-1}{3}=\dfrac{\sqrt{bc}-3}{9}=\dfrac{\sqrt{ac}-5}{-6}\\\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=11\end{matrix}\right.\)
Tính
\(\left|x-\dfrac{1}{2}\right|-\sqrt{\dfrac{1}{9}}=\sqrt{\dfrac{1}{4}}\)
\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
CMR \(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\)