1: \(=\left(\dfrac{1}{3}\right)^{25}\cdot90^{25}\cdot\dfrac{1}{3^{25}}-\dfrac{2}{12}\)
\(=\dfrac{30^{25}}{3^{25}}-\dfrac{1}{6}=10^{25}-\dfrac{1}{6}\)
2: \(=10\cdot1\cdot\dfrac{4}{3}+7-\dfrac{1}{6}\cdot2=20\)
1: \(=\left(\dfrac{1}{3}\right)^{25}\cdot90^{25}\cdot\dfrac{1}{3^{25}}-\dfrac{2}{12}\)
\(=\dfrac{30^{25}}{3^{25}}-\dfrac{1}{6}=10^{25}-\dfrac{1}{6}\)
2: \(=10\cdot1\cdot\dfrac{4}{3}+7-\dfrac{1}{6}\cdot2=20\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
1 tính
\(\left(-\dfrac{1}{3}+\dfrac{5}{6}\right)^2-\dfrac{\sqrt{25^2-\sqrt{49^2}}}{\sqrt{36^2+\sqrt{38^2}}}\)
Bài 1 :
a) Tính B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.35}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.\left(\sqrt{196}\right)^3}\)
b)Tìm x biết : \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|-3,2+\sqrt{\dfrac{4}{25}}\right|\)
c)Tính \(\left|3x+1\right|>4\)
\(\dfrac{\sqrt{\dfrac{9}{4}}-3^{-1}+2018^0}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}+0,4}}{0,6-\dfrac{2}{3}\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
Nhớ giải chi tiết nha
1. Tính giá trị biểu thức sau bằng cách hợp lí
\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
Tính giá trị biểu thức = cách hợp lí:
A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
Bài 1 : Tính giá trị biểu thức :
1/ 0,2.\(\sqrt{100}\) -\(\sqrt{\dfrac{16}{25}}\)
2/ \(\dfrac{2^7.9^{3^{ }}}{6^5.8^2}\)
3/\(\sqrt{0,01}\) - \(\sqrt{0,25}\)
4/ 0,5 . \(\sqrt{100}\) - \(\sqrt{\dfrac{1}{4}}\)
5/ 7. \(\sqrt{0,01}\) + 2.\(\sqrt{0,25}\)
6/ 0,5.\(\sqrt{100}\) - \(\sqrt{\dfrac{1}{25}}\)