\(\sin 2a = \sin \left( {a + a} \right) = \sin a.\cos a + \cos a.\sin a = 2\sin a\cos a\)
\(\begin{array}{l}\cos 2a = \cos \left( {a + a} \right) = \cos a.\cos a - \sin a.\sin a = {\cos ^2}a - {\sin ^2}a\\\tan 2a = \tan \left( {a + a} \right) = \frac{{\tan a + \tan a}}{{1 - \tan a.\tan a}} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\end{array}\)