Ta có: \(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\frac{2^{20}.\left(2^{10}+1\right)}{2^{13}.\left(1+2^{10}\right)}=\frac{2^7.\left(2^{10}+1\right)}{1+2^{10}}=2^7=128\)