\(=\dfrac{4.3-3}{3-3}=\dfrac{9}{0}=+\infty\)
\(=\dfrac{4.3-3}{3-3}=\dfrac{9}{0}=+\infty\)
\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}=5\). Tính \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[4]{f\left(x\right)+1}-3}{2x^2-11x+15}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
b, \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)
tính\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[3]{x}+x^2+x+1}{\sqrt[3]{8x}+\sqrt{4x^2+x+1}}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Biết \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+4x+8}-\sqrt[3]{81x^2+63x-19}}{x^3-x^2-x+1}=\dfrac{b}{c}\). Tính a+b+c