Tính \(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
ms đúng chứ
Tính \(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
ms đúng chứ
\(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{x^2+1}+2x+1}{\sqrt[3]{2x^3+x+1}+x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x^2-x+1}-\sqrt[3]{2x+3}}{3x^2-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2+x}+\sqrt[3]{8x^3+x-1}}{\sqrt[4]{x^4+3}}\)
\(lim_{x->\frac{+}{ }\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-1}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-x^3+3x-4}{x-1}\)
3) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}\)
4) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}\)
5) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}\)
6) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}\)
Bài 1
a. \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{4x^2}+1}{3x-1}\)
b. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9x^2+x+1}-\sqrt{4x^2+2x+1}}{x+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+2x+3}+4x+1}{\sqrt{4x^2+1}+2-x}\)
d. \(\lim\limits_{x\rightarrow+\infty}\frac{3x-2\sqrt{x}+\sqrt{x^4-5x}}{2x^2+4x-5}\)
Bài 2
a. \(\lim\limits_{x\rightarrow-\infty}\frac{2x+1}{x-1}\)
b. \(\lim\limits_{x\rightarrow-\infty}\frac{2x^3+3}{x^3-2x^2+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\left(3x^2+1\right)\left(5x+3\right)}{\left(2x^3-1\right)\left(x+4\right)}\)
BÀI 3. Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^3-5x^2+1}{7x^2-x+4}\)
b) \(\lim\limits_{x\rightarrow+\infty}x\sqrt{\dfrac{x^2+2x+3}{3x^4+4x^2-5}}\)
Mọi người giải giúp em bài này với!
1,\(\lim\limits_{x\rightarrow+\infty}\frac{x^4+8x}{x^3+2x^2+x+2}\)
2,\(\lim\limits_{x\rightarrow-\infty}\frac{1+3x}{\sqrt{2x^2+3}}\)
3,\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Giá trị của các giới hạn :
a, lim\(\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+1}\right)\) khi x→\(-\infty\)
b, lim\(\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) khi x→\(+\infty\)
c, lim\(\left(\sqrt[3]{2x-1}-\sqrt[3]{2x+1}\right)\) khi x→\(+\infty\)