Xét mẫu số của F :
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2016\cdot2017}{2}}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{2017}\right)=2-\frac{2}{2017}=\frac{4032}{2017}\)
Suy ra : \(F=\frac{2.2016}{\frac{4032}{2017}}=\frac{2.2016.2017}{4032}=2017\)