ta có : \(\left(x+2\sqrt{y}\right)^5=\sum\limits^5_{k=0}.C^k_5.x^k.\left(2\sqrt{y}\right)^{5-k}=C^0_5.\left(2\sqrt{y}\right)^5+C^1_5.x.\left(2\sqrt{y}\right)^4+...+C^4_5.x^4.\left(2.\sqrt{y}\right)+C^5_5.x^{5y}\)
=> hệ số của \(x^3.y\) trong khai triển tương ứng với k = 3
Vậy hệ số tương ứng là: \(C^3_5..2^2=240\)
\(\left(x+\sqrt{y^{ }}\right)^{5^{ }}\)