Ta có
\(\begin{array}{l}Q = {\tan ^2}\frac{\pi }{3} + {\sin ^2}\frac{\pi }{4} + \cot \frac{\pi }{4} + \cos \frac{\pi }{2}\\\,\,\,\,\, = \,{\left( {\sqrt 3 } \right)^2} + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 1 + 0 = \frac{7}{2}\end{array}\)
Ta có
\(\begin{array}{l}Q = {\tan ^2}\frac{\pi }{3} + {\sin ^2}\frac{\pi }{4} + \cot \frac{\pi }{4} + \cos \frac{\pi }{2}\\\,\,\,\,\, = \,{\left( {\sqrt 3 } \right)^2} + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 1 + 0 = \frac{7}{2}\end{array}\)
Tính các giá trị lượng giác của góc \(\alpha \) trong mỗi trường hợp sau:
a) \(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
b) \(\cos \alpha = - \frac{2}{3}\) với \( - \pi < \alpha < 0\)
c) \(\tan \alpha = 3\) với \( - \pi < \alpha < 0\)
d) \(\cot \alpha = - 2\) với \(0 < \alpha < \pi \)
Cho góc lượng giác \(\alpha \)sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm \(\cos \alpha \)
Tính các giá trị lượng giác của mỗi góc sau: \(225^\circ ; - 225^\circ ; - 1035^\circ \);\(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\)
a) \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8}\)
b) \(\tan {1^ \circ }.\tan {2^ \circ }.\tan {45^ \circ }.\tan {88^ \circ }.\tan {89^ \circ }\)
Tính các giá trị lượng giác (nếu có) có mỗi góc sau:
a) \(\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} \right)\)
b) \(\frac{\pi }{3}+\left( 2k+1 \right)\pi \,\,\left( k\in \mathbb{Z} \right)\)
c) \(k\pi \,\,\left( {k \in Z} \right)\)
d) \(\frac{\pi }{2} + k\pi \,\,(k \in Z)\)
Dùng máy tính cầm tay để tính:
a) \(\tan ( - {75^ \circ });\)b) \(\cot \left( { - \frac{\pi }{5}} \right)\)
Cho góc lượng giác (Ou,Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou,Ow) có số đó là \(\frac{{3\pi }}{4}\). Tìm số đo của góc lượng giác (Ov,Ow).
Gọi M, N, P là các điểm trên đường tròn lượng giác sao cho số đo của các góc lượng giác \(\left( {OA,OM} \right),\,\left( {OA,ON} \right),\,\left( {OA,OP} \right)\) lần lượt bằng \(\frac{\pi }{2};\,\,\frac{{7\pi }}{6};\,\, - \frac{\pi }{6}\). Chứng minh rằng tam giác MNP là tam giác đều.
Tìm giác trị lượng giác của góc lượng giác \(\beta = - \frac{\pi }{4}\)