\(\begin{array}{l}B = \left( {\frac{{ - 3}}{{13}}} \right) + \frac{{16}}{{23}} + \left( {\frac{{ - 10}}{{13}}} \right) + \frac{5}{{11}} + \frac{7}{{23}}\\ = \left[ {\left( {\frac{{ - 3}}{{13}}} \right) + \left( {\frac{{ - 10}}{{13}}} \right)} \right] + \left[ {\frac{{16}}{{23}} + \frac{7}{{23}}} \right] + \frac{5}{{11}}\\ = - 1 + 1 + \frac{5}{{11}}\\ = \frac{5}{{11}}\end{array}\)
`B= ( (-3)/13 + (-10)/13) + (16/23 + 7/23 ) +5/11`
`B= -13/13 + 23/23 +5/11`
`B=-1+1+5/11`
`B=0+5/11`
`B=5/11`
\(B=\left(-\dfrac{3}{13}\right)+\dfrac{16}{23}+\left(-\dfrac{10}{13}\right)+\dfrac{5}{11}+\dfrac{7}{23}\)
\(B=\left[\left(-\dfrac{3}{13}\right)+\left(-\dfrac{10}{13}\right)\right]+\left(\dfrac{16}{23}+\dfrac{7}{23}\right)+\dfrac{5}{11}\)
\(B=\left(-1\right)+1+\dfrac{5}{11}\)
\(B=\dfrac{5}{11}\)
` B = ( (-3)/13 ) + 16/23 + ( (-10)/13 ) + 5/11 + 7/23 `
` B = ( (-3)/13 + (-10)/13 ) + ( 16/23 + 7/23 ) + 5/11 `
` B = -1 + 1 + 5/11 `
` B = 0 + 5/11 `
` B = 5/11`