Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:
\(C=0+0+0+1\)
C = 0
Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:
\(C=0+0+0+1\)
C = 0
a, A= \(\left(15x+2y\right)-\left[\left(2x+3\right)-\left(5x+y\right)\right]\) tại x=1 ; y= -1
b, B= -\(\left(12x+3y\right)+\left(5x-2y\right)-\left[13x+\left(2y+5\right)\right]\) tại x= \(\frac{-1}{2}\); y= \(\frac{1}{7}\)
1. CMR: Nếu \(\left|a\right|\ge2\) và \(\left|b\right|\ge2\) thì giá trị của 2 biểu thức \(A=\dfrac{a+b}{ab}\) và \(B=\dfrac{2006}{2005}\) không bằng nhau
2. Chứng tỏ rằng \(\forall x,y\in Q\) thì giá trị của biểu thức luôn là số dương
\(M=\dfrac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
3. Tìm cặp số nguyên dương ( x, y ) để biểu thức sau có giá trị là số nguyên
\(A=\dfrac{2x+2y-3}{x+y}\)
4. Tìm GTNN của biểu thức
\(B=\dfrac{x^2+y^2+3}{x^2+y^2+2}\)
5. Xác định a và b biết rằng:
a) \(3x=\left(a+b\right)x+2a-b\)
b) \(\left(x+a\right)\left(bx-1\right)=x^2-7x+6\)
6. CM đẳng thức:
\(\dfrac{3y\left(x+1\right)-6x-6}{3y-6}=\dfrac{2\left(y+3\right)+2xy+6x}{2y+6}\) ( \(y\ne2,y\ne-3\) )
Cho các đơn thức sau:\(A=\dfrac{-1}{2}x^2y.\left(1\dfrac{1}{2}\right)xy\);\(B=\left(-xy\right)^2y\);\(C=\left(\dfrac{-1}{2}y\right)^3x^2\);\(D=\left(-x^2y^2\right).\left(\dfrac{-2}{3}x^3y\right)\).
a)Trong các đơn thức trên đơn thức nào đồng dạng.
b)Xác định dấu của x và y biết các đơn thức A;C;D có cùng giá trị dương.
c)Chứng minh rằng trong ba đơn thức A;B;D có ít nhất một đơn thức âm với mọi x,y khác 0.
d)Tính giá trị của D tại \(x=\dfrac{5}{2};y=\dfrac{-4}{25}.\)
Câu 1: (4,0 điểm) Tính hợp lý
a) \(\dfrac{-7}{25}+\dfrac{-18}{25}+\dfrac{4}{23}+\dfrac{5}{7}+\dfrac{19}{23}\)
b)\(\dfrac{7}{19}.\dfrac{8}{11}+\dfrac{7}{19}.\dfrac{3}{11}+\dfrac{12}{19}\)
c)\(\left(-25\right).125.4.\left(-8\right).\left(-17\right)\)
d) \(\dfrac{7}{35}.\dfrac{10}{19}+\dfrac{7}{35}.\dfrac{9}{19}-\dfrac{2}{35}\)
Câu 2: (3,0 điểm)
Tính giá trị các biểu thức sau
a. \(A=\dfrac{1}{2}\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2015.2017}\right)\)
b.\(B=2x^2-3x+5\) với \(\left|x\right|=\dfrac{1}{2}\)
c. \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\), biết x-y=0
Câu 3(4,0 điểm0
1.Tìm x,y biết : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\le0\)
2.Tìm x,y,z biết : \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2};x+y+z=18\)
Câu 4: (3,0 điểm)
1. Tìm các số nguyên x,y biết : \(x-2xy+y-3=0\)
2. Cho đa thức f(x)=\(x^{10}-101x^9+101x^8-101x^7+...-101x+101.\)
Tính f(100)
Câu 5 (5,0 điểm)
Cho tam giác ABC có ba góc nhọn (AB<AC).Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE.Gọi I là giao điểm của CD và BE,K là giao điểm của AB và DC
a) Chứng minh rằng : tam giác ADC=tam giác ABE
b)Chứng minh rằng : góc DIB=60 độ
c) Gọi M và N lần lượt là trung điểm của CD và BE.Chứng minh rằng tam giác AMN là tam giác đều
d)Chứng minh rằng IA là phân giác của góc DIE
Câu 6: (1,0 điểm)
Cho tam giác ABC vuông tại A có AB=3cm,AC=4cm.Điểm I nằm trong tam giác và cách đều 3 cạnh tam giác ABc.Gọi M là chân đường vuông góc kẻ từ I đến BC.Tính MB
@Hồng Phúc Nguyễn
Tìm giá trị của x,y thõa mãn
\(\left|2x-27\right|^{2017}+\left(3y+27\right)^{2016}=0\)
Tìm x thuộc Q biết:
a) |x| + |1 - x| = x + |x - 3|
b) |x - 3| + |x + 5| = 8
c) |x + 1| + |x + 2| + |x +3| + |x +4| = 5x - 1
d)\(\left|x^2\right|x+\frac{1}{4}\left|\right|\) = \(x^2\)
e) 2015 . \(\left|2x-y\right|^{2016}+2016.\left|y-4\right|^{2015}\) lớn hơn hoặc bằng 0
f) 3 . |4x| + |y + 3| = 21 (x,y thuộc Z)
g) \(2y^2=3-\left|x+4\right|\)
h) |x + 2| + |x - 1| = 3 - \(\left(y+2\right)^2\)
i) |2x + 3| + |2x - 1| = \(\frac{8}{3\left(y-5\right)^2+2}\)
k) | x + y + 5| + 5 = \(\frac{30}{3.\left|y+5\right|+6}\)
Tìm giá trị không thích hợp của x; y trong các biểu thức sau :
a) \(\frac{3x^2y+5}{\left(x-1\right)\left(y+2\right)}\)
b) \(\left(2x-1\right)^2+3\)
Thu gọn các đơn thức trong biểu thức đại số sau:
C = \(\dfrac{7}{9}x^3y^2.\dfrac{6}{11}axy^3+-5bx^2y^4.-\dfrac{1}{2}axz+ax.\left(x^2y\right)^3\)
D = \(\dfrac{\left(3x4y^3\right)^2.\left(\dfrac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\) ( với axyz khác 0)
Tìm x,y,z
\(\left|x-3\right|+\left|y-2x\right|+\left|2z-x+y\right|=0\)
\(\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)