a,thay x=1,y=-1
=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12
b,thay=-1/2,y=1/7
=>B=4
a,thay x=1,y=-1
=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12
b,thay=-1/2,y=1/7
=>B=4
Tìm x,y,z
\(\left|x-3\right|+\left|y-2x\right|+\left|2z-x+y\right|=0\)
\(\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)
Tìm x,y,z biết:
a, \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)
b, \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x+7y-7}{4x}\)
c,\(\left|x+5\right|+\left(3y-4\right)^{2010}-0\)
Mọi người giúp mình nha????
Bài 1:thu gọn đa thức
a,\(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
b,\(-54y^2\cdot bx\) với b là hằng số
c,\(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
Bài 2:cho 2 đa thức:
\(f\left(x\right)=x^5-3x^2+7x^4-9x^3-\frac{1}{4}\)
\(g\left(x\right)=5x^4-x^5+x^2+3x^2-\frac{1}{4}\)
a,Hãy thu gọn và sắp xếp hai đa thức trên
b,Tính \(f\left(x\right)+g\left(x\right)\) và \(f\left(x\right)-g\left(x\right)\)
Bài 3:Cho \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
a,Thu gọn f(x)
b,Tính f(1) và f(-1)
Tìm x thuộc Q biết:
a) |x| + |1 - x| = x + |x - 3|
b) |x - 3| + |x + 5| = 8
c) |x + 1| + |x + 2| + |x +3| + |x +4| = 5x - 1
d)\(\left|x^2\right|x+\frac{1}{4}\left|\right|\) = \(x^2\)
e) 2015 . \(\left|2x-y\right|^{2016}+2016.\left|y-4\right|^{2015}\) lớn hơn hoặc bằng 0
f) 3 . |4x| + |y + 3| = 21 (x,y thuộc Z)
g) \(2y^2=3-\left|x+4\right|\)
h) |x + 2| + |x - 1| = 3 - \(\left(y+2\right)^2\)
i) |2x + 3| + |2x - 1| = \(\frac{8}{3\left(y-5\right)^2+2}\)
k) | x + y + 5| + 5 = \(\frac{30}{3.\left|y+5\right|+6}\)
Thu gọn biểu thức :
a) \(\left(\frac{-a}{2}\right)\)3xy\(\left(4a^2x^3\right)\)\(\left(\frac{13}{3}ay^2\right)\)
b)\(\left(2x^2y^3z^4\right)^k\) \(^{\left(-\frac{1}{2}xy^2\right)^2}\)
c) \(\left(\frac{7}{3}x^2y^3\right)^{10}\left(\frac{3}{7}x^5y^4\right)^{10}\)
Tính giá trị của biểu thức sau:
C = \(2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\), biết \(x-y=0\)
Tìm giá trị không thích hợp của x; y trong các biểu thức sau :
a) \(\frac{3x^2y+5}{\left(x-1\right)\left(y+2\right)}\)
b) \(\left(2x-1\right)^2+3\)
1) Thu gọn các đơn thức sau và tìm bậc:
a) \(\dfrac{1}{2}x^2.\left(-2x^2y^2z\right).\dfrac{-1}{3}x^2y^3\)
b) \(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(-2xy^2z\right)^2\)
2) Thu gọn:
a) \(\left(-6x^3zy\right)\left(\dfrac{2}{3}yx^2\right)^2\)
b) \(\left(xy-5x^2y^2+xy^2-xy^2\right)-\left(x^2y^2+3xy^2-9x^2y\right)\)
3) Tính tổng và hiệu các đơn thức sau:
a) \(2x^2+3x^2-7x^2\)
b) \(5xy-\dfrac{1}{3}xy+xy\)
c) \(15xy^2-\left(-5xy^2\right)\)
a.\(\left(x+1\right)^{x+5}=\left(x+1\right)^{x+7}\)
\(b.3x-5y+6z=21\\\frac{x}{3}=\frac{y}{7}=\frac{2z}{5}\)
\(c.4x=3y=5z\\ x+y+z=\frac{-7}{2}\)
\(d.\left|x-5\right|-\left|2x+1\right|=x-2\)