a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
Tính giá trị các biểu thức sau:
a) \({\left( { - 5} \right)^{ - 1}}\);
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}}\);
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}}\).
Tính giá trị các biểu thức sau:
a) \({25^{\frac{1}{2}}}\);
b) \({\left( {\frac{{36}}{{49}}} \right)^{ - \frac{1}{2}}}\);
c) \({100^{1,5}}\).
Biết rằng \({4^\alpha } = \frac{1}{5}\). Tính giá trị các biểu thức sau:
a) \({16^\alpha } + {16^{ - \alpha }}\);
b) \({\left( {{2^\alpha } + {2^{ - \alpha }}} \right)^2}\).
Tính giá trị các biểu thức sau:
a) \(\sqrt[4]{{\frac{1}{{16}}}}\);
b) \({\left( {\sqrt[6]{8}} \right)^2}\);
c) \(\sqrt[4]{3}.\sqrt[4]{{27}}\).
Rút gọn các biểu thức sau \(\left( {a > 0,b > 0} \right)\):
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}}\);
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}}\);
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right)\).
Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):
a) \(3.\sqrt 3 .\sqrt[4]{3}.\sqrt[8]{3}\);
b) \(\sqrt {a\sqrt {a\sqrt a } } \);
c) \(\frac{{\sqrt a .\sqrt[3]{a}.\sqrt[4]{a}}}{{{{\left( {\sqrt[5]{a}} \right)}^3}.{a^{\frac{2}{5}}}}}\).
Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):
a) \({a^{\frac{3}{5}}}.{a^{\frac{1}{2}}}:{a^{ - \frac{2}{5}}}\);
b) \(\sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2}}}\sqrt a } } \).
Viết các biểu thức sau dưới dạng luỹ thừa với số mũ hữu tỉ:
a) \(\sqrt {{2^3}} \);
b) \(\sqrt[5]{{\frac{1}{{27}}}}\);
c) \({\left( {\sqrt[5]{a}} \right)^4}\).
Tại một xí nghiệp, công thức \(P\left( t \right) = 500.{\left( {\frac{1}{2}} \right)^{\frac{t}{3}}}\) được dùng để tính giá trị còn lại (tính theo triệu đồng) của một chiếc máy sau thời gian \(t\) (tính theo năm) kể từ khi đưa vào sử dụng.
a) Tính giá trị còn lại của máy sau 2 năm; sau 2 năm 3 tháng.
b) Sau 1 năm đưa vào sử dụng, giá trị còn lại của máy bằng bao nhiêu phần trăm so với ban đầu?