a)
$16^{\alpha }+16^{-\alpha } = (4^2)^{\alpha }+(4^2)^{-\alpha } = 4^{2\alpha }+4^{-2\alpha }$
$4^{2\alpha }+4^{-2\alpha } = 4^{2\log_4{\frac{1}{5}}}+4^{-2\log_4{\frac{1}{5}}} = \left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^{-2} = \frac{1}{25}+25 = \frac{26}{25}$
b)
$\left(2^{\alpha }+2^{-\alpha }\right)^2 = \left(\sqrt{4}\right)^{\alpha }+\left(\sqrt{4}\right)^{-\alpha } = 4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}}$
$4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}} = 4^{\frac{\log_4{\frac{1}{5}}}{2}}+4^{-\frac{\log_4{\frac{1}{5}}}{2}} = \left(\frac{1}{5}\right)^{\frac{1}{2}}+\left(\frac{1}{5}\right)^{-\frac{1}{2}} = \sqrt{\frac{1}{5}}+\frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}$