Tìm các số thực x,y thỏa mãn:
2019/x-1/+2020/y-2/+2021/y-3/+2022/y-4/=4042
Cho các số x, y thỏa mãn đẳng thức: \(5x^2+5y^2+8xy+2x-2y+2=0\)
Tính giá trị của biểu thức:
M = \(\left(x+y\right)^{2019}+\left(x+2\right)^{2020}+\left(y-1\right)^{2021}\)
Cho các số x;y thỏa mãn : \(5x^2+5y^2+8xy-2x+2y+2=0\)
Tính giá trị biểu thức:\(M=\left(x+y\right)^{2019}+\left(x-2\right)^{2020}+\left(y+1\right)^{2021}\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Cho 3x-y=3z và 2x+y=7z. Tính giá trị của biểu thức: \(M=\dfrac{x^2-2xy}{x^2+y^2}\left(x\ne0,y\ne0\right)\)
Bài 1 : Tìm GTLN và GTNN của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Bài 2 : Cho 2 số chính phương liên tiếp. Cmr : Tổng của 2 số đó + với tích của chúng = 1 số chính phương lẻ
Bài 3 : Cho đa thức \(F\left(x\right)=x^3+\text{ax}^2+bx+c\) (Với a, b, c ∈ R ). Biết đa thức F( x ) chia cho đa thức x + 1 dư - 4, đa thức F( x ) chia cho đa thức x - 2 dư 5
Hãy tính giá trị của \(A=\left(a^{2019}+b^{2019}\right)\left(b^{2020}-c^{2020}\right)\left(c^{2021}+a^{2021}\right)\)
Cho 3 số x, y, z thỏa mãn : x2 + y2 + z2 = 2020. Tìm giá trị nhỏ nhất cảu biểu thức : M = 2xy - yz - zx + 1
Tính giá trị của biểu thức \(A=\dfrac{x-y}{x+y}\), biết: \(x^2-2y^2=xy\) (y\(\ne0\); \(x+y\ne0\))