\(\frac{3}{4}-\sqrt{\frac{3}{12}}+\frac{\left(\sqrt{3}\right)^2}{4}\)
\(=\frac{3}{4}-\sqrt{\frac{1}{4}}+\frac{3}{4}\)
\(=\frac{3}{4}.2-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}=1\)
\(\frac{3}{4}-\sqrt{\frac{3}{12}}+\frac{\left(\sqrt{3}\right)^2}{4}\)
\(=\frac{3}{4}-\sqrt{\frac{1}{4}}+\frac{3}{4}\)
\(=\frac{3}{4}.2-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}=1\)
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
TÍNH:
a)\(10.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
b)\(\left(\frac{1}{3}\right)^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
Tính giá trị của biểu thức:
\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
Rút gọn biểu thức: \(C=\frac{12-\sqrt{15.135}+\left(\sqrt{31}\right)^2}{\sqrt{\frac{80}{45}-\frac{10}{\left(\sqrt{3}\right)^2}}}\)
1, Tính
\(A=\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
\(B=\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{11}{12}\right)\)
a) Chứng tỏ rằng với số tưh nhiên n > 0 ta có:
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
b) Áp dụng kết quả trên hãy tính giá trị của biểu thức:
\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
Tính
a. \(\frac{\left(13\frac{1}{4}-2\frac{5}{7}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
Thực hiện phép tính và cho biết giá trị của biểu thức( chính xác đến 2 chữ số thập phân) :
A=\(\frac{\sqrt{27}+2,43}{8,6.1,13}\) B=\(\left(\sqrt{5}+\frac{2}{3}\right).\left(6,4-\frac{4}{7}\right)\)
TÍNH:
a)\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
b)\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)