\(\dfrac{2x^3-4x^2}{x^2+8x+16}.\dfrac{3x+12}{4x-x^3}\)
(ĐKXĐ: x ≠ \(-4\) ; x ≠ 0; x ≠ 2 ; x ≠ \(-2\) )
\(\dfrac{2x^3-4x^2}{x^2+8x+16}.\dfrac{3x+12}{4x-x^3}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(4-x^2\right)}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{6x^2\left(x-2\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x^2\left(2-x\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x}{\left(x+4\right)\left(x+2\right)}\)