\(y=x^8\Rightarrow y'=8x^7\)
\(\Rightarrow y'\left(1\right)=8.1^7=8\)
\(y=x^8\Rightarrow y'=8x^7\)
\(\Rightarrow y'\left(1\right)=8.1^7=8\)
Cho hàm số y = \(-x^2+3x-2\) có đồ thị (P)
a,Tính đạo hàm của hàm số tại điểm \(y^'\) \(x_0\) thuộc R
b,Viết phương trình tiếp tuyến của (P) tại điểm có hoành độ \(x_0\)=2
c,Viết phương trình tiếp tuyến của (P) tại điểm có tung độ \(y_0\)=0
d,Viết phương trình tiếp tuyến của (P), biết tiếp tuyến vuông góc với đường thắng \(y^'=x+3\)
11. Cho hàm số y = |2x -3| . Khẳng định nào là đúng A. Hs liewn tục tại x=3/2 , ko có đạo hàm tại x =3/2 B. Hs liewn tục tại x =3/2 có dsaoj hàm tại x =3/2 C. Hs ko liên tục tại x =3/2 , ko có đạo hàm tại x =3/2 D. Hs ko liên tục tại x = 3/2 , có đạo hàm tại x=3/2.
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra :
a) \(y=x^2+x\) tại \(x_0=1\)
b) \(y=\dfrac{1}{x}\) tại \(x_0=2\)
c) \(y=\dfrac{x+1}{x-1}\) tại \(x_0=0\)
Tính dạo hàm của các hàm số bằng định nghĩa Y=3x^2+2 tại x0=0 Y= x^3+2x-1 tại x0=0
Tính dạo hàm của các hàm số bằng định nghĩa Y=3x^2+2 tại x0=0 Y= x^3+2x-1 tại x0=0 E đang cần gấp ah
Chứng minh rằng hàm số :
\(y=\left|x-1\right|\) không có đạo hàm tại \(x=1\) nhưng liên tục tại điểm đó ?
Tính số gia của hàm số y= x3 +x2 +1 tại điểm x0 ứng với số gia △x =1
Chứng minh rằng hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\left(x-1\right)^2;\left(x\ge0\right)\\-x^2;\left(x< 0\right)\end{matrix}\right.\)
Không có đạo hàm tại điểm \(x=0\) nhưng có đạo hàm tại điểm \(x=2\)
Tính số gia của hàm số y= \(\dfrac{x^2}{2}\) tại điểm x0 =-1 ứng với số gia Δx