Tính
\(A=\frac{3}{\sqrt{3}}+\frac{2\sqrt{3}}{\sqrt{3}+1}\) \(B=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(C=\frac{5+2\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
\(D=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\) \(E=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}-\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(A=\sqrt{3}+\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\sqrt{3}+\sqrt{3}\left(\sqrt{3}-1\right)=3\)
\(B=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\sqrt{3}-2-\sqrt{3}=-2\)
\(C=\frac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\sqrt{5}-\sqrt{3}\)
\(C=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
\(D=\frac{2}{\left|2-\sqrt{5}\right|}-\frac{2}{\left|2+\sqrt{5}\right|}=\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}=\frac{2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(D=2\sqrt{5}+4-2\sqrt{5}+4=8\)
\(E=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}-\sqrt{2}=0\)