Cho biểu thức:
\(A=1-\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2-\left(\dfrac{3}{4}\right)^3+\left(\dfrac{3}{4}\right)^4-...+\left(\dfrac{3}{4}\right)^{2016}-\left(\dfrac{3}{4}\right)^{2017}\)
Chứng tỏ rằng a không phải là một số nguyên.
Cho A=\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right).\left(\dfrac{1}{2016}-1\right).\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right).\left(-1\dfrac{1}{2016}\right).\left(-1\dfrac{1}{2017}\right)\)
Tính M=A.B
A=\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2017}\right)\)
Tính M=A*B
a,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
b,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
c,\(23\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)-13\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)\)
d,1:\(\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
e,\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
A= \(1-\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2-\left(\dfrac{3}{4}\right)^3+\left(\dfrac{3}{4}\right)^4-...-\left(\dfrac{3}{4}\right)^{2009}+\left(\dfrac{3}{4}\right)^{2010}\)
Chứng tỏ A ko phải là số nguyên
Tính \(A=\left(0.25\right)^{-1}.\left(\dfrac{1}{4}\right)^{-2}.\left(\dfrac{4}{3}\right)^{-2}.\left(\dfrac{5}{4}\right)^{-1}.\left(\dfrac{2}{3}\right)^{-3}\)
\(6.\left(-\dfrac{2}{3}\right)^3-3.\left(-\dfrac{2}{3}\right)^2-2.\left(-\dfrac{2}{3}\right)+4\)
\(\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right).2\dfrac{2}{17}\right]\)
1) \(25^{10}.\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\right)^8.\left(\dfrac{-4}{3}\right)^8-2018^0\)
2) \(\left(\dfrac{5}{2}-\dfrac{4}{3}\right).\dfrac{6}{7}+\left(\dfrac{-3}{2}\right)^5:\left(\dfrac{-3}{2}\right)^3\)
3) \(\dfrac{4^5.9^4-2.6^9}{3^8.2^{10}+6^8.20}\)
Câu 1:
a, Tính M =\(3\dfrac{1}{417}\cdot\dfrac{1}{762}-\dfrac{1}{139}\cdot4\dfrac{761}{762}-\dfrac{4}{417\cdot762}+\dfrac{5}{139}\)
b, Tính \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Câu 2: Cho \(\left(a+3\right)\left(b-4\right)-\left(a-3\right)\left(b+4\right)=0\) . Chứng minh \(\dfrac{a}{3}=\dfrac{b}{4}\).