Bài 5: Lũy thừa của một số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phúc Nguyên

Tính:

a) S=1.2+2.3+3.4+...+99.100

b) B=\(\dfrac{49^{24}.125^{17}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)

c) C=\(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}\right).3^5+\left(\dfrac{1}{3^5}+\dfrac{1}{3^6}+\dfrac{1}{3^7}+\dfrac{1}{3^8}\right).3^9+...+\left(\dfrac{1}{3^{97}}+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\right).3^{101}\)

d) D= \(3-3^2+3^3-3^4+...+3^{2017}-3^{2018}\)

Thuận
25 tháng 3 lúc 20:41
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^


Các câu hỏi tương tự
I LOVE YOU
Xem chi tiết
ngọc linh dương
Xem chi tiết
lê khánh chi
Xem chi tiết
Ta Chia Tay Đi
Xem chi tiết
Dân Nguyễn
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết
Thạch Nguyễn
Xem chi tiết
lê khánh chi
Xem chi tiết
lê khánh chi
Xem chi tiết