Rút gọn bt: A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+\dfrac{n-3}{3}+..+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Bài 1 :
Cho x, y, z \(\ne0\) ; A = \(\dfrac{y}{z}+\dfrac{z}{y}\) ; B = \(\dfrac{z}{x}+\dfrac{x}{z}\) ; C = \(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính A\(^2\) + B\(^2\) + C\(^2\) - ABC
Bài 2 :
Cho x = \(\dfrac{a}{b+c}\) ; y = \(\dfrac{b}{c+a}\) ; z = \(\dfrac{c}{a+b}\)
Tính xy + yz + xz + 2xyz
Bài 3: Rút gọn
\(A=\left(1+\dfrac{b^2+c^2-a^2}{2abc}\right)\times\dfrac{1+\dfrac{a}{b+c}}{1-\dfrac{a}{b+c}}\times\dfrac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
Thực hiện phép tính:
1. \(\dfrac{x}{x+1}-\dfrac{2x}{x-1}+\dfrac{x+3}{x^2-1}\)
2. \(\dfrac{5}{x+1}-\dfrac{10}{x-x^2-1}-\dfrac{15}{x^3+1}\)
3. \(\dfrac{2}{2x+1}-\dfrac{1}{2x-1}-\dfrac{2}{1-4x^2}\)
4. \(\dfrac{3x^2+5x+14}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{4}{x+1}\)
Giải các phương trình sau :
1.\(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
2.\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
3.\(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10x}\)
4.\(\dfrac{6x_{ }+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
5.\(\dfrac{2}{x^2-4}-\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x-4}{x\left(x+2\right)}=0\)
6.\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
Thực hiện phép tính:
1. \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)
2. \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)
3. \(\dfrac{y}{xy-5y^2}-\dfrac{15y-25x}{y^2-25x^2}\)
4. \(\dfrac{4-2x+x^2}{2+x}-2-x\)
5. \(\dfrac{2x^3-2y^3}{3x+3y}:\dfrac{2x^2+2xy+y^2}{x^2+2xy+y^2}\)
6. \(\left(\dfrac{1+x}{1-x}-\dfrac{1-x}{1+x}\right)\left(\dfrac{3}{4x}+\dfrac{x}{4}-x\right)\)
a) \(\dfrac{2a-1}{2a+1}-\dfrac{2a-3}{2a-1}\)
b) \(\dfrac{1}{x+1}-\dfrac{1}{x-1}-\dfrac{2x^2}{1-x^2}\)
c) \(\dfrac{x+1}{\left(x+2\right)^2}-\dfrac{1}{x+2}-\dfrac{1}{1-x^2}\)
d) \(\dfrac{x-5}{x^2+3x}+\dfrac{6}{x+3}\)
e) \(x+2+\dfrac{3}{x-2}\)
g) \(\dfrac{4-x}{x^2-4x}+\dfrac{3}{x}+\dfrac{-2}{x+1}\)
h) \(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
i) \(\dfrac{x}{x^2-4x}-\dfrac{3}{5x}\)
k) \(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\)
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
Rút gọn
A=\(\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(12^4+\dfrac{1}{4}\right)}\)
B1: Tính:
\(B=\dfrac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
B2: Xác định a, b, c:
a, \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{1-2}+\dfrac{c}{n+2}\) với mọi x khác 0, x khác \(\pm2\)
b, \(\dfrac{1}{x^3-1}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
Help me!!!