\(A=(1-\frac{1}{1}+2)\cdot\left(1-\frac{1}{1}+2+3\right)\cdot\left(1-\frac{1}{1}+2+3+4\right)\cdot....\cdot\left(1-\frac{1}{1}+2+3+...+100\right)\)
\(Ta\) \(có\)\(:\) \(\frac{1}{1}\left(2+1\right)\cdot\frac{1}{1}\left(1-2+3\right)\cdot\frac{1}{1}(1-2+3+4)\cdot...\cdot\frac{1}{1}(1-2+3+...+100)\)
⇒\(\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{6}\cdot...\cdot\frac{1}{4400}\)
⇒\(\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{3\cdot2}\cdot\frac{1}{11\cdot2\cdot2\cdot100}\)
⇒\(1(\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{3\cdot2}\cdot...\cdot\frac{1}{11\cdot2\cdot2\cdot100})\)
⇒\(1(1\cdot\frac{1}{11\cdot2\cdot2\cdot100})\)
⇒\(1\cdot\frac{1}{4400}\)
➩\(\frac{1}{4400}\)
Chúc bạn học tốt!