CMR : a) 1/2! + 2/3! + 3/4! +...+ 99/100! < 1
b) 1.2-1/2! + 2.3-1/3! + 3.4-1/4! +...+ 99.100-1/100! < 2
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
chứng minh rằng:
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
mình ngu toán chúng minh (hép mi)
cho A= \(\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{49.50^2}\)
B= \(\frac{1}{2^{ }}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh : A < \(\frac{1}{2}\)<B
So sánh A và B với \(\dfrac{1}{2}\) biết :
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+........+\dfrac{1}{49.50^2}\) và
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{50^2}\)
CMR:\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}< 1\)
chứng minh rằng \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100-1}{100!}< 2\)
help me
tính Q
Q=\(\frac{1.98+2.97+3.96+...+2.97+1.98}{1.2+2.3+3.4+...+96.97+97.98+98.99}\)
Chứng minh: \(1.2+2.3+3.4+......+n\left(n+1\right)⋮3\)