Bài 1:
\(A=1^3+2^3+...+99^3+100^3\)
\(=\left(1+2+...+100\right)^2\)
\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)
\(=5050^2=25502500\)
A= 13 + 23 + 33 + ... + 1003
= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101
= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )
= 5050 + 101989800
= 101994850