tinh a=1+3/2^3+4/2^4+...+100/2^100
Bai 1: Tinh :
A= 1-2+3-4+4-5+...+99-100
B = 1.2+2.3+3.4+4.5+...+99.100
Tinh: A=1+3/2^3+4/2^4+5/2^5+...+100/2^100
1.Tính
\(\left(1-\dfrac{1^2}{100}\right)\left(1-\dfrac{2^2}{100}\right)\left(1-\dfrac{3^2}{100}\right)...\left(1-\dfrac{2018^2}{100}\right)\)
2.S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\)
Chứng minh rằng S <\(\dfrac{1}{2}\)
tính tổng 1/2 x ( 1+ 2) + 1/3x( 1+ 2+3) + 1/4 x ( 1+ 2+ 3+ 4) + ...+ 1/100x (n 1+ 2+ 3+ 4+ 5+ ....+ 100)
Chứng minh rằng:
C = 1/3 + 2/32 + 3/33 + 4/34 + . . . . . . . + 100/3100 < 3/4
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+......\frac{100}{3^{100}}< \frac{3}{4}\)
1) ( -213) + 186 + ( - 14 ) + 217 + 54 + ( - 49 )
2 ) - 38 . ( 25 - 4 ) + 25 . ( -4 + 38 )
3) -39 . ( 5 - 99 ) + 99 . ( 10 - 39 )
4 ) 1+ 3-5-7+9+ 11 - ....- 397 - 399
5) 1+ 2 + 2^2 + ... + 2 ^ 100
6) 3^102 - 3 ^ 100 - 3 ^ 98 -...3 ^2 - 3 ^0
Tính:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)