Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Như Quỳnh

tìm x,y,z biết \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)

Trần Thị Hiền
17 tháng 2 2017 lúc 17:14

Áp dụng tc dãy tỉ số băng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+x}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow\left\{\begin{matrix}\frac{x}{y+z+1}=\frac{1}{2}\\\frac{y}{z+x+1}=\frac{1}{2}\\\frac{z}{x+y-2}=\frac{1}{2}\\\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}2x=y+z+1\\2y=z+x+1\\2z=x+y-2\end{matrix}\right.\) (1)

\(x+y+z=\frac{1}{2}\Rightarrow\left\{\begin{matrix}y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\\x+y=\frac{1}{2}-z\end{matrix}\right.\) (*)

Thay (*) vào (1) ta được

\(\left\{\begin{matrix}2x=\frac{1}{2}-x+1\\2y=\frac{1}{2}-y+1\\2z=\frac{1}{2}-z-2\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=\frac{-3}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{matrix}\right.\)

Vậy...


Các câu hỏi tương tự
Bảo Ngọc cute
Xem chi tiết
Thư Nguyễn Ngọc Anh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Hoàng Thị Minh Phương
Xem chi tiết
Nguyễn Thanh Vân
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Thị Hiền Lương
Xem chi tiết
Hinamori Amu
Xem chi tiết
Tam giác
Xem chi tiết