a)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2=4.9=36 => x=\(\pm6\)
y2=4.16=64 => y\(\pm8\)
Vì \(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu
Vậy (x;y) thõ mãn là (6;8);(-6;-8)
b)
Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)
2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
=> x=(-2).10=-20
y=(-2).15=-30
z=(-2).6=-12
Vậy x=-20; y=-30; z=-12
Giải:
a) Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k,y^2=16k\)
Mà \(x^2+y^2=100\)
\(\Rightarrow9k+16k=100\)
\(\Rightarrow\left(9+16\right)k=100\)
\(\Rightarrow k.25=100\)
\(\Rightarrow k=4\)
+) \(k=4\Rightarrow x^2=36\Rightarrow x=\pm6;y^2=64\Rightarrow y=\pm8\) ( x, y cùng dấu )
Vậy cặp số \(\left(x;y\right)\) là \(\left(6;8\right);\left(-6;-8\right)\)
b) Ta có: \(3x=2y=5z\Rightarrow\frac{3x}{30}=\frac{2y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
+) \(\frac{x}{10}=-2\Rightarrow x=-20\)
+) \(\frac{y}{15}=-2\Rightarrow y=-30\)
+) \(\frac{z}{6}=-2\Rightarrow z=-12\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-30;-12\right)\)