a, \(x-3\sqrt{x}=0\). Đk: x\(\ge\)0
--> x2 = 9x
-->x(x-9)=0
-->\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)(tmđk)
b,\(\left|9-7x\right|=5x-3\)
* 9-7x=5x-3
-->12x=12 --> x=1
* 9-7x=-5x+3
--> 2x=6 -->x=3
a, \(x-3\sqrt{x}=0\). Đk: x\(\ge\)0
--> x2 = 9x
-->x(x-9)=0
-->\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)(tmđk)
b,\(\left|9-7x\right|=5x-3\)
* 9-7x=5x-3
-->12x=12 --> x=1
* 9-7x=-5x+3
--> 2x=6 -->x=3
Tìm x,y,z biết:
a, \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)
b, \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x+7y-7}{4x}\)
c,\(\left|x+5\right|+\left(3y-4\right)^{2010}-0\)
Tìm x , y biết :
a ) \(\left|x-y\right|+\left|x-9\right|=0\)
b ) \(\left|x^2-3x\right|+\left|\left(x+1\right).\left(x-3\right)\right|=0\)
Tìm x, y, z
a) \(\sqrt{16}x+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01.\sqrt{100}\)
b) \(\left|x\right|+3^2=2^2+\left(\frac{1}{2}\right)^3\)
c) \(2x\left(x-\frac{2}{3}\right)=0\)
d) \(\frac{37-x}{x+13}=\frac{3}{7}\)
Tìm x,y,z
a)\(\frac{x}{4}-\frac{1}{9}=\frac{1}{2}\left(xthuộcZ\right)\)
b)\(x+y=xy=x:y\left(với\right)xykhác0\)
c)\(x-y=xy=xy\left(ykhac0\right)\)
d)\(\left(x+1\right)\left(x-2\right)< 0\)
e)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
f)\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=5\)
\(Tìm\ các\ số\ x,y,z \in Q\ biết \ rằng\)
\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)
Tìm x ; y ; z biết
a) 3 \(\left|x\right|\) = -9 b) 6(x-2) - (x - 3 ) = 31 c) \(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}\) và x + y + z = 30
3 \(\left|x\right|\) = 12
a) tìm x,y,z biết:\(\left(2x-1\right)^{ }+\left(y-\dfrac{2}{5}\right)^{ }+|x+y-z|=0\)
b)so sánh \(\sqrt{15}+\sqrt{35}\) và\(2\sqrt{26}\)
c)so sánh 2126và 384
Tìm x thuộc Z biết: \(\frac{x^2.\left(x-3\right)}{x-9}< 0\)
Tìm x thuộc Q biết:
a) |x| + |1 - x| = x + |x - 3|
b) |x - 3| + |x + 5| = 8
c) |x + 1| + |x + 2| + |x +3| + |x +4| = 5x - 1
d)\(\left|x^2\right|x+\frac{1}{4}\left|\right|\) = \(x^2\)
e) 2015 . \(\left|2x-y\right|^{2016}+2016.\left|y-4\right|^{2015}\) lớn hơn hoặc bằng 0
f) 3 . |4x| + |y + 3| = 21 (x,y thuộc Z)
g) \(2y^2=3-\left|x+4\right|\)
h) |x + 2| + |x - 1| = 3 - \(\left(y+2\right)^2\)
i) |2x + 3| + |2x - 1| = \(\frac{8}{3\left(y-5\right)^2+2}\)
k) | x + y + 5| + 5 = \(\frac{30}{3.\left|y+5\right|+6}\)