Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow y^2=36-8\left(x-2010\right)^2\)
+)Xét trường hợp y=0 \(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)
\(\Rightarrow\left(x-2010\right)^2=4,5\) (ko thỏa mãn vì \(x\in N\))
+)Xét trường hợp \(y\ne0\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\Rightarrow8\left(x-2010\right)^2>36\)
\(\Rightarrow\left(x-2010\right)^2>4,5\)
Mà \(\left(x-2010\right)^2\) là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\)
\(\Rightarrow y=\sqrt{36}=6\)\(\Rightarrow x=2010;y=6\) (thỏa mãn)
Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)
Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x-2010=-2
\(\Rightarrow\left[{}\begin{matrix}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4\Rightarrow y=\sqrt{4}=2\)(do y thuộc N)
Vậy \(\left\{{}\begin{matrix}x=2010\\y=6\end{matrix}\right.;\left\{{}\begin{matrix}x=2012\\y=2\end{matrix}\right.;\left\{{}\begin{matrix}x=2008\\y=2\end{matrix}\right.\)
Bài này đúng 100% tại mk học rồi, bạn hk tốt nha