Sửa đề: \(\left(4x-5\right)^3\cdot\left(2x-3\right)\left(x-1\right)=9\)
Sửa đề: \(\left(4x-5\right)^3\cdot\left(2x-3\right)\left(x-1\right)=9\)
Tìm x:
(2x2+x)2-4(2x2+x)+3=0
(x+y)2+(1+x)(1+y)=0
(3x-2)(x+1)2(3x+8)=-16
(4x-5)(2x-3)(x-1)=9
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
giả hệ pt
\(\left\{{}\begin{matrix}x^3-y^3=9\\2x^2+y^2-4x+y=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{x^2+5}=2\sqrt{y-1}+y^2\\2\sqrt{y^2+5}=2\sqrt{x-1}+x^2\end{matrix}\right.\)
1. Giai phương trình: \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2. Giai hệ phương trình: \(\left\{{}\begin{matrix}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{matrix}\right.\)
1) Tìm x
a)\(x^4-4x^2+5=0\)
b)\(2x+5\sqrt{x}-3=0\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
Giải các phương trình sau:
a, \(\left(x-3\right)^2+x^4=-y^2+6y-4\)
b, \(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
c, \(4+4x-x^2=|x-1|+|x-2|+|2x-3|+|4x-14|\)
d, \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Câu 1:Giải phương trình:
(3-x)căn((3+x)(9+x^2))=4 căn(5(3-x))
Câu 2:Tính x/y biết x>1,y<0 và (x+y)(x^3-y^3)căn((1-căn(4x-1))^2)/(1-căn(4x-1))(x^2y^2+xy^3+y^4)