\(\Leftrightarrow x^2-1-2x^2-10x-12-6=0\)
\(\Leftrightarrow x^2+10x+19=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5+\sqrt{6}\\x=-5-\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow x^2-1-2x^2-10x-12-6=0\)
\(\Leftrightarrow x^2+10x+19=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5+\sqrt{6}\\x=-5-\sqrt{6}\end{matrix}\right.\)
1) Tìm x:
a. \(x^3-\dfrac{1}{4}x=0\) b. \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
c. \(2x^2-x-6=0\)
2) Cho biểu thức \(B=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}\)
a.Rút gọn B.
b. Tính giá trị của B tại x = 2
Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau
a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2
b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x
c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)
d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)
Câu 5. Giải các phương trình sau
a, \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\); b, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
Bài 1. Tìm giá trị của K sao cho
a, Phương trình: 2x + k= x-1 có nghiệm x=-2
b, Phương trình: (2x+1) (9x+2k) - 5(x+2)=40 có nghiệm x=2
c, Phương trình: 2(2x+1)+18+=3(x+2) (2x+k) có nghiệm x=1
d, Phương trình: 5(m+3x) (x+1)- 4(1+2x) =80 có nghiệm x=2
Bài 2. Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
a, mx2-(m+1) x+1= 0 và (x-1) (2x-1)= 0
b,(x-3) (ax+2)= 0 và (2x+b) (x+1)= 0
Bài 1. Tìm giá trị của K sao cho
a, Phương trình: 2x + k= x-1 có nghiệm x=-2
b, Phương trình: (2x+1) (9x+2k) - 5(x+2)=40 có nghiệm x=2
c, Phương trình: 2(2x+1)+18+=3(x+2) (2x+k) có nghiệm x=1
d, Phương trình: 5(m+3x) (x+1)- 4(1+2x) =80 có nghiệm x=2
Bài 2. Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
a, mx2-(m+1) x+1= 0 và (x-1) (2x-1)= 0
b,(x-3) (ax+2)= 0 và (2x+b) (x+1)= 0
giải phương trình sau
2, (x+3)(x+5)+(x+3)(3x-4)=0
3, (x+6)(3x-1)+x+6=0
4, (x+4)(5x+9)-x-4=0
5, (1-x)(5x+3)=(3x-7)(x-1)
6, 2x(2x-3)=(3-2x)(2-5x)
Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau
a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2
b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x
c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)
d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)
giải phương trình
1)\(\left(x-2\right)\left(3+2x\right)-2x\left(x+5\right)=6\)
2)\(x^2-4-\left(x-5\right)\left(x-2\right)=0\)
3)\(\dfrac{x-3}{3}-\dfrac{x+2}{2}=\dfrac{x}{6}\)
4)\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{3x-1}{x-4}-6\)
5)\(\dfrac{96}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}-6\)
Giải các phương trình sau:
a) 1/x-2 - 1/x2 - 4 = 4/5
b) 1/x+2 + 1/(x+2)2 = 22
c) 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-10x2/3x-24
d) 2 + 2x-8x/2x2+8x + 2x2+7x+23/2x2+7x-4 = 2x+5/2x-1
e) 1/2-x + 14/x2-9 = x-4/x+3 + 7/3+x
g) 3/2x+1 = 6/2x+3 + 8/4x2+8x+3
Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0
1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)
g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)
i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)
p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)
v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)