Cho x,y,z thuộc Z và P=(x+2012)5+(2y-2013)5+(3z+2014)5; S=x+2y+3z+2013
CMR: P chia hết cho 3 tương đương S chia hết cho 3
Cho xyz khác 0,x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2.tÍnh P=(1+x/y)(1+y/z)(1+z/x)
chứng minh rằng nếu
(x-y) ^2 + (y - z ) ^2 +( z- x) ^2 = ( y+z -2x )^2 + (z+ x -2y ) ^ 2 + (x+y -2z)^ 2 thì x = y = z
Cho x, y, z thỏa mãn điều kiện sau: x2 + 2xy2 + z2 - 2xy - 2y - 4z + 5 = 0. Tính giá trị biểu thức:
A= ( x - 1 )2018 + ( y - 1 )2019 + ( z - 1 )2020
rut gọn cac biểu thưc
a)(x-2y)(x+2y)+(x+2y)^2
b)(x^2-xy+y^2)(x^2+xy+y^2)
c)(x-2y+3z)(x+2y-3z)
chứng minh \(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
thì x=y=z
b) \(\left(a+b+c+d\right)\left(a-b+c-d\right)=\left(a^2-b+c-d\right)\left(a+b-c-d\right)\)
thì ad=bc
Chứng minh không tồn tại x,y,z thỏa mãn
a) \(5x^2+10y^2-6xy-4x-2y+3\)=0
b) \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
1.PTDTTNT
a, 2xy+3z +6y + xz
b, 9x - x^3
c, xz + yz -5 * ( x+y)
d, x^2 + 4x - y^2 +4
e, x^2 - 2xy + y^2 - z^2 + 27t - t^2
f, x^64 + x^32 +1
g a^10 + a^5 +1
thực hiện phép tính :
a/(2x+3y)2
b/(x2+\(\dfrac{2}{5}\)y).(x2 -\(\dfrac{2}{5}\)y)
c/(x-3y).(x2+3xy+9y2)
d/(x+2y+z).(x+2y-z)
e/(x2-3).(x4+3x2+9)
cho x,y,z thỏa mãn \(x^2\)+2\(y^2\)+\(z^2\)-2xy-2y-4z+5=0
tính A=\(\left(x-1^{ }\right)^{2015}\)+\(\left(y-1\right)^{2015}\)+\(\left(z-1\right)^{2015}\)