Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
= \(\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> \(x+y+z=\frac{1}{2}\)
=> \(\frac{x}{y+z+1}=\frac{1}{2}\) => y + z + 1 = 2x => y + z + x + 1 = 3x => 1/2 + 1 = 3x => 3/2 = 3x => x = 1/2
=> \(\frac{y}{x+z+1}=\frac{1}{2}\) => x + z + 1 = 2y => x + y + z + 1 = 3y => 1/2 + 1 = 3y
=> 3/2 = 3y => y = 1/2
=> \(\frac{z}{x+y-2}=\frac{1}{2}\) => x + y - 2 = 2z => x + y + z - 2 = 3z => 1/2 - 2 = 3z => -3/2 = 3z => z = -1/2
Vậy ...