Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quốc Tuấn hi

Cho biết : x+y+z =2020

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)

Tính M = \(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)

Akai Haruma
19 tháng 11 2019 lúc 11:43

Lời giải:

Từ điều kiện đề bài suy ra $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Rightarrow (x+y)(y+z)(x+z)=0$

Do đó: $M=\frac{x+y}{z}.\frac{x+z}{y}.\frac{y+z}{x}=\frac{(x+y)(y+z)(x+z)}{xyz}=\frac{0}{xyz}=0$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
dovinh
Xem chi tiết
Trần Khởi My
Xem chi tiết