\(xy+2x+3y=-6\)
\(\Rightarrow x\left(y+2\right)+3y+6=0\)
\(\Rightarrow x\left(y+2\right)+3\left(y+2\right)=0\)
\(\Rightarrow\left(x+3\right)\left(y+2\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+3=0\\y+2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy \(x=-3;y=-2\)
xy + 2x + 3y = -6
=> x ( y + 2 ) + 3y + 6 = 0
=> x ( y + 2 ) + 3 ( y + 2 ) = 0
=> ( x + 3 ) ( y + 2 ) = 0
=> \(\left\{\begin{matrix}x+3=0\\y+2=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy x = -3 , y = -2
\(xy+2x+3y=-6\)
\(\Leftrightarrow x\left(y+2\right)+3y+6=-6+6\)
\(\Leftrightarrow x\left(y+2\right)+3\left(y+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+3=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)