\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
A nguyên khi \(4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3=\left\{-4;-2;-1;1;2;4\right\}\)
| \(\sqrt{x}-3\) |
-4 | -2 | -1 | 1 | 2 | 4 |
| x | \(\varnothing\) | 1 | 4 | 16 | 25 | 49 |
vậy khi x={1;4;16;25} thì A nguyên
Để A thuộc Z thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
mà \(\sqrt{x}-3⋮\sqrt{x}-3\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
Xét các th...