Ta có
\(\left(x+1\right)\left(x-2\right)< 0\)
Vì \(x+1>x-2\)
\(\Rightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\)\(\Rightarrow\begin{cases}x>-1\\x< 2\end{cases}\)\(\Rightarrow-1< x< 2\)
Vậy - 1 < x < 2
\(\left(x+1\right).\left(x-2\right)< 0\)
\(\Rightarrow x+1\) và \(x-2\) khác dấu
Mà \(x+1>x-2\) với mọi \(x\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+1>0\\x-2< 0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-1\\x=2\end{array}\right.\)
\(\Rightarrow-1< x< 2\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy : \(x\in\left\{0;1\right\}\)
Nghiệm của bất phương trình được biểu diễn trên trục số