Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính:
\(M=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2}}{\sqrt{2x^2+2x}}\right)^{2016}\)
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
Tìm x bt:
\(\sqrt{x^2+2x+1}\) = -x
Rút gọn:
a, \(\sqrt{\left(4-\sqrt{17}\right)}^2\) - \(\sqrt{17}\)
b, \(\sqrt{\left(5-2\sqrt{3}\right)^2}\) - \(2\sqrt{3}\)
Tìm x:
a) \(\left(5x-6\right)^2-\frac{1}{\sqrt{5x-7}}=x^2-\frac{1}{\sqrt{x-1}}\)
b) \(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)
c) \(\frac{\sqrt{x+1}-2}{\sqrt[3]{2x+1}-3}=\frac{1}{x+2}\)
d) \(-2x^3+10x^2-17x+8=2x^2\sqrt[3]{5x-x^2}\)
e) \(9x^2-28x+21=\sqrt{x-1}\)
f) \(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\sqrt{1+x+x^2}+1=0\)
Mng giúp em với ạ, em cảm ơn
a,\(\left(4.\sqrt{x-1}-7\right).\left(2-\sqrt{x-1}\right)=5-4x\)
b,\(\frac{2}{5}.\left(\sqrt{2x+1}+5\right)=\frac{1}{4}.\left(\sqrt{2x+1}-1\right)\)
mn ơi giúp mik vs :((
\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
giải phương trình
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)
Giải các phương trình sau:
a, \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
b,\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\)
Giải các phương trình sau:
a, \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
b,\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\)