Ta có : \(\left|x-3,5\right|\ge0\) với mọi x
\(\left|4,5-x\right|\ge0\) với mọi x
\(\Rightarrow\left|x-3,5\right|+\left|4,5-x\right|\ge0\) với mọi x
Mà : \(\left|x-3,5\right|+\left|4,5-x\right|=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-3,5=0\\4,5-x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=3,5\\x=4,5\end{array}\right.\) ( KTM )
\(\Rightarrow x\in\varnothing\)
1) Nếu x < 2,5 ta có: 2,5 - x + 3,5 - x = 0
<=> -2x = -6
suy ra x = 3 (không thỏa mãn điều kiện x < 2,5 nên loại)
2) Nếu 2,5 <= x < 3,5 ta có: x-2,5+3,5-x=0
<=> 0.x = -1 (vô nghiệm)
3) Nếu x >= 3,5 ta có: x-2,5+x-3,5=0
<=> 2x=6 suy ra x = 3 (không thỏa mãn điều kiện x >= 3,5 nên loại)
Vậy không có giá trị nào của x thỏa mãn.
\(\left|x-3,5\right|+\left|4,5-x\right|=0\)
Vì \(\begin{cases}\left|x-3,5\right|\ge0\\\left|4,5-x\right|\ge0\\\left|x-3,5\right|+\left|4,5-x\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=3,5\\x=4,5\end{cases}\)
Vì x không đồng thời xảy ra
\(\Rightarrow x\in\varnothing\)
Bđt |a|+|b|>=|a+b|
|x-3,5|+|4,5-x|>=|x-3,5+4,5-x|=1>0>VT
=>VP>VT
rỗng x